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1 Introduction

The fractional calculus deals with extensions of derivatives and integrals to noninteger orders.
The field of fractional differential equations has been subjected to an intensive development
of the theory and applications in mathematical physics, finance, hydrology, biophysics, ther-
modynamics, control theory, statistical mechanics, astrophysics, cosmology and bioengineer-
ing (Baleanu et al., 2012; Hilfer, 2000; Mainardi, 2010; Miller & Ross, 1993; Nakhushev, 2000;
Oldham & Spanier, 1974; Samko et al., 1993; Tarasov, 2011; Vázquez et al., 2011). In recent
years, several qualitative results for ordinary and partial fractional differential equations have
been obtained (see (Agarwal et al., 2017; Dhiman et al., 2017; Diethelm, 2010; Gorenflo et al.,
2015; Kilbas & Marzan, 2004; Kilbas et al., 2006; Kochubei, 2013; Kubica& Ryszewska, 2018;
Liang et al., 2018; Podlubny, 1999; Zhou, 2014) and references therein).

In the simplest physical processes, there arise fractional derivatives with respect to two
independent variables– the coordinate and time. Therefore, the study of the boundary value
problems for the fractional partial differential equations is a topical field of fractional calculus.
The Darboux problem for fractional partial hyperbolic differential equations was studied in
(Abbas et al., 2012; Vityuk & Mykhailenko, 2008, 2011).

Nonlocal boundary value problems are usually called problems with given conditions that
connect the values of the desired solution and/or its derivatives either at different points of
the boundary or at boundary points and some interior points. Note that nonlocal problems
for hyperbolic differential equations and the corresponding optimal control problems are being
actively studied at present time (Byszewski, 1991; Yusubov, 2014, 2017). But, nonlocal problems
for the hyperbolic equations of fractional order are less investigated ( Abbas & Benchohra, 2009).

In this paper we investigate the existence and uniqueness of the solutions of the following
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fractional hyperbolic differential equations with boundary value conditions:

(l11u)(x) ≡ Dα1
1 Dα2

2 u+ a1(x)D
α1
1 u+ a2(x)D

α2
2 u+ a3(x)u = φ11(x),

x ∈ D = [0, X1]× [0, X2] ,
(1)


(l1u)(x1) ≡ α1D

α1
1 u(x1, 0) + β1D

α1
1 u(x1, X2) = φ1(x1),

x1 ∈ Jx1 = [0, X1] ,
(l2u)(x2) ≡ α2D

α2
2 u(0, x2) + β2D

α2
2 u(X1, x2) = φ2(x2),

x2 ∈ Jx2 = [0, X2] ,
l0u ≡ u(0, 0) = φ0,

(2)

where X1, X2 > 0, Dα1
1 Dα2

2 is the mixed Caputo fractional derivative of order α = (α1, α2) ∈
(0, 1]× (0, 1], Dαi

i , i = 1, 2 are the partial αi -order Caputo derivatives.

It is further assumed that the functions a1(x), a2(x), a3(x) and φ11(x) are continuous in D,
the functions φ1(x1) and φ2(x2) continuous in Jx1 and Jx2 , respectively, αi, βi, i = 1, 2 are real
numbers.

The posed problem is reduced to the integral equation and the existence of its solution is
proved by the help of a priori estimates.

This paper is organized as follows. In Section 2, we recall briefly some basic definitions and
preliminary facts which will be used throughout the following section. The posed problem is
reduced to the integral equation in Section 3. The existence and uniqueness results for problem
(1), (2) are obtained in Section 4.

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are used through-
out this paper. By C(D) we denote the Banach space of all continuous functions from D into
R with the norm

∥u∥C(D) = max
x∈D

|u(x)| .

L1(D) is the space of Lebesgue –integrable functions u : D → R with the norm

∥u∥ =

X1∫
0

X2∫
0

|u(x1, x2)| dx1dx2.

Definition 1. (Kilbas et al., 2006; Samko et al., 1993). Let α1 ∈ (0,∞), and u ∈ L1(D).
The partial Riemann-Liouville integral of order α1 of u(x) with respect to x1 is defined by the
expression

(
Iα1
0,x1

u
)
(x1, x2) =

1

Γ(α1)

x1∫
0

(x1 − s1)
α1−1u(s1, x2)ds1,

for almost all x1 ∈ [0, X1] and almost all x2 ∈ [0, X2], where Γ(·) is the (Euler’s) Gamma
function defined as

Γ(ξ) =

∞∫
0

tξ−1e−tdt, ξ > 0.

Analogously, we define the integral
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(
Iα2
0,x2

u
)
(x1, x2) =

1

Γ(α2)

x2∫
0

(x2 − s2)
α2−1u(x1, s2)ds2,

for almost all x1 ∈ [0, X1] and almost all x2 ∈ [0, X2].

Definition 2. (Kilbas et al., 2006; Samko et al., 1993). Let α1 ∈ (0, 1] and u ∈ L1(D). The
Riemann-Liouville fractional derivative of order α1 of u(x1, x2) with respect to x1 is defined by
the expression (

Dα1
0,x1

u
)
(x1, x2) =

∂

∂x1

(
I1−α1
0,x1

u
)
(x1, x2),

for almost all x1 ∈ [0, X1] and almost all x2 ∈ [0, X2].
Analogously, we define the derivative(

Dα2
0,x2

u
)
(x1, x2) =

∂

∂x2

(
I1−α2
0,x2

u
)
(x1, x2),

for almost all x1 ∈ [0, X1] and almost all x2 ∈ [0, X2].

Definition 3. (Vityuk & Mykhailenko, 2011). Let α1 ∈ (0, 1] and u ∈ C(D). The Caputo
fractional derivative (regularized derivative) of order α1 of u(x1, x2) with respect to x1 is defined
by the expression

(Dα1
1 u) (x1, x2) ≡

(
CDα1

0,x1
u
)
(x1, x2) =

∂

∂x1

(
I1−α1
0,x1

(u(s1, x2)− u(0, x2))
)
(x1, x2)

=
1

Γ(1− α1)

∂

∂x1

x1∫
0

(x1 − s1)
−α1(u(s1, x2)− u(0, x2))ds1.

Analogously, we define the derivative

(Dα2
2 u) (x1, x2) ≡

(
CDα2

0,x2
u
)
(x1, x2) =

∂

∂x2

(
I1−α2
0,x2

(u(x1, s2)− u(x1, 0))
)
(x1, x2)

=
1

Γ(1− α2)

∂

∂x2

x2∫
0

(x2 − s2)
−α2(u(x1, s2)− u(x1, 0))ds2.

Definition 4. (Kilbas et al., 2006; Samko et al., 1993). Let α = (α1, α2), αi > 0, i = 1, 2,
θ = (0, 0) and u ∈ L1(D). The left-sided mixed Riemann-Liouville integral of order α of
u(x1, x2) is defined by the expression

(
Iαθ,xu

)
(x) =

1

Γ(α1)Γ(α2)

x1∫
0

x2∫
0

(x1 − s1)
α1−1(x2 − s2)

α2−1u(s1, s2)ds1ds2.

In particular,

(
Iθθ,xu

)
(x) = u(x),

(
Iσθ,xu

)
(x) =

x1∫
0

x2∫
0

u(s1, s2)ds1ds2,

for almost all x ∈ D, where σ = (1, 1).
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For instance, Iαθ,xu exists for all αi > 0, i = 1, 2, when u ∈ L1(D). Note also that when

u ∈ C(D), then
(
Iαθ,xu

)
(x) ∈ C(D), moreover

(
Iαθ,xu

)
(x1, 0) =

(
Iαθ,xu

)
(0, x2) = 0, xi ∈ [0, Xi] , i = 1, 2.

By 1−α we mean (1−α1, 1−α2) ∈ (0, 1]× (0, 1]. We denote by D1D2 :=
∂2

∂x1∂x2
, the mixed

second order partial derivative.

Definition 5. (Vityuk & Mykhailenko, 2011). Let α ∈ (0, 1] × (0, 1] and u ∈ C(D). The
mixed fractional Riemann-Liouville derivative of order α of u(x) is defined by the expression(
Dα

θ,xu
)
(x) =

(
D1D2I

1−α
θ,x u

)
(x) and the mixed Caputo fractional derivative (mixed regularized

derivative) of order α of a function u(x) is defined by the expression

(Dαu) (x) = (Dα1
1 Dα2

2 u) (x1, x2) =
(
CDα

θ,xu
)
(x1, x2) = D1D2×

×
(
I1−α
θ,x [u(s1, s2)− u(s1, 0)− u(0, s2) + u(0, 0)]

)
(x1, x2) =

1

Γ(1− α1)Γ(1− α2)
×

× ∂2

∂x1∂x2

x1∫
0

x2∫
0

(x1 − s1)
−α1(x2 − s2)

−α2(u(s1, s2)− u(s1, 0)− u(0, s2) + u(0, 0))ds1ds2.

3 Reduction of Problem (1), (2) to the Equivalent
Integral Equation

We define the functional spaces as follows

Cα(D) = {u(x) ∈ C(D)|Dα1
1 u(x) ∈ C(D), Dα2

2 u(x) ∈ C(D), Dαu(x) ∈ C(D)} .

Lemma 1. The space Cα(D) endowed with the norm

∥u∥Cα(D) = ∥u∥C(D) + ∥Dα1
1 u∥C(D) + ∥Dα2

2 u∥C(D) + ∥Dαu∥C(D) (3)

is a Banach space.

We consider also the space

Hα = C(D)× C(Jx1)× C(Jx2)×R

of elements b = (b11, b1, b2, b0) with the norm

∥b∥Hα = ∥b11∥C(D) + ∥b1∥C(Jx1 )
+ ∥b2∥C(Jx2 )

+ ∥b0∥R,

where R is a space of real numbers.

The structural characteristic of the space Cα(D) is given bellow.
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Theorem 1. The space Cα(D) consists of those and only those functions u(x) ∈ C(D) which
can be represented in the form

u(x) = (Qb) (x) ≡ b0 +
(
Iα1
0,x1

b1

)
(x1) +

(
Iα2
0,x2

b2

)
(x2) +

(
Iαθ,xb11

)
(x) (4)

where b11(x) ∈ C(D), b1(x1) ∈ C(Jx1), b2 ∈ C(Jx2), b0 ∈ R,

(
Iα1
0,x1

b1

)
(x1) =

1

Γ(α1)

x1∫
0

(x1 − s1)
α1−1b1(s1)ds1,

(
Iα2
0,x2

b2

)
(x2) =

1

Γ(α2)

x2∫
0

(x2 − s2)
α2−1b2(s2)ds2,

(
Iαθ,xb11

)
(x) =

1

Γ(α1)Γ(α2)

x1∫
0

x2∫
0

(x1 − s1)
α1−1(x2 − s2)

α2−1b11(s1, s2)ds1ds2.

It follows from (4) that

b11(x) = (Dαu) (x), b1(x1) = (Dα1
1 u) (x1, 0), b2(x2) = (Dα2

2 u) (0, x2), b0 = u(0, 0).

Lemma 2. The operator Q defined by (4) satisfies

C1 ∥b∥Hα ≤ ∥Qb∥Cα(D) ≤ C2 ∥b∥Hα , ∀b ∈ Hα,

where Ci = const > 0, i = 1, 2.

The number b0 and the functions b1(x1), b2(x2), b11(x) on the right-hand side of (4) are
independent elements of the function u(x) ∈ Cα(D). These assertions show that a linear home-
omorphism between Cα(D) and Hα exists. That is, the space Cα(D) has the isomorphic de-
composition Cα(D) = C(D)× C(Jx1)× C(Jx2)×R = Hα. This important property of (4) can
be used for investigation of the initial boundary-value problems in Cα(D).

We seek a solution of problem (1), (2) in the space Cα(D) with dominating mixed Caputo
derivative Dα1

1 Dα2
2 u and with the norm (3). Problem (1), (2) is a linear nonhomogeneous

problem. We consider the problem as an operator equation

l u = φ, (5)

with linear operator l = (l11, l1, l2, l0) and φ = (φ11(x), φ1(x1), φ2(x2), φ0).

The existing conditions guarantee that operator l is bounded from Cα(D) into the Banach
space Hα. If, for the given φ ∈ Hα, problem (1), (2) has a unique solution u ∈ Cα(D) with
∥u∥Cα(D) ≤ k ∥φ∥Hα , then (1), (2) is a well-posed problem, where k is an independent of φ
constant. We observe that the considered problem is a well-posed one if and only if the operator
l is a homeomorphism (linear) between Cα(D) and Hα.

Equation (5) can be reduced to the equivalent equation

l Q b = φ (6)

with the unknown b = (b11(x), b1(x1), b2(x2), b0) ∈ Hα by the transformation u = Qb.

We choose the element

b = (b11(x), b1(x1), b2(x2), b0) ∈ Hα
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such that the corresponding function u(x), defined by the representation (4) would satisfy the
conditions (2).

For this purpose substituting (4) into (2), we obtain

(l1Qb)(x1) ≡ α1b1(x1) + β1

[
b1(x1) +

1
Γ(α2)

X2∫
0

(X2 − s2)
α2−1b11(x1, s2)ds2

]
= φ1(x1),

(l2Qb)(x2) ≡ α2b2(x2) + β2

[
b2(x2) +

1
Γ(α1)

X1∫
0

(X1 − s1)
α1−1b11(s1, x2)ds1

]
= φ2(x2),

l0Qb ≡ b0 = φ0. (7)

Let αi + βi ̸= 0, i = 1, 2, then from the first and second formulas of (7), correspondingly,
we have

b1(x1) =
1

α1+β1

[
φ1(x1)− β1

Γ(α2)

X2∫
0

(X2 − s2)
α2−1b11(x1, s2)ds2

]
,

b2(x2) =
1

α2+β2

[
φ2(x2)− β2

Γ(α1)

X1∫
0

(X1 − s1)
α1−1b11(s1, x2)ds1

]
.

(8)

Substituting (8) and the third formula of (7) into (4), we obtain that the arbitrary function
u ∈ Cα(D) can be represented as

u(x) = φ0+
1

(α1 + β1)Γ(α1)

x1∫
0

(x1−s1)
α1−1φ1(s1)ds1+

1

(α2 + β2)Γ(α2)

x2∫
0

(x2−s2)
α2−1φ2(s2)ds2

− β1
(α1 + β1)Γ(α1)Γ(α2)

x1∫
0

X2∫
0

(x1 − s1)
α1−1(X2 − s2)

α2−1b11(s1, s2)ds1ds2

− β2
(α2 + β2)Γ(α1)Γ(α2)

x2∫
0

X1∫
0

(X1 − s1)
α1−1(x2 − s2)

α2−1b11(s1, s2)ds1ds2

+
1

Γ(α1)Γ(α2)

x1∫
0

x2∫
0

(x1 − s1)
α1−1(x2 − s2)

α2−1b11(s1, s2)ds1ds2. (9)

Immediaty calculations give

Dα1
1 u(x) = φ1(x1)

α1+β1
− β1

(α1+β1)Γ(α2)

X2∫
0

(X2 − s2)
α2−1b11(x1, s2)ds2

+ 1
Γ(α2)

x2∫
0

(x2 − s2)
α2−1b11(x1, s2)ds2,

Dα2
2 u(x) =

φ2(x2)

α2 + β2
− 1

(α2 + β2)Γ(α1)

X1∫
0

(X1 − s1)
α1−1b11(s1, x2)ds1 (10)

+ 1
Γ(α1)

x1∫
0

(x1 − s1)
α1−1b11(s1, x2)ds1,

Dα1α2u(x) = b11(x).
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Substituting (9) and (10) into (1), we obtain that equation (1) is equivalent to the integral
equation

(l11Qb)(x) ≡ b11(x) + (Ab11)(x) + (Bb11)(x) = Φ(x), (11)

where

(Ab11)(x) ≡ a1(x)
Γ(α2)

x2∫
0

(x2 − s2)
α2−1b11(x1, s2)ds2

+ a2(x)
Γ(α1)

x1∫
0

(x1 − s1)
α1−1b11(s1, x2)ds1

+ a3(x)
Γ(α1)Γ(α2)

x1∫
0

x2∫
0

(x1 − s1)
α1−1(x2 − s2)

α2−1b11(s1, s2)ds1ds2,

(12)

(Bb11)(x) ≡ − β1a1(x)
(α1+β1)Γ(α2)

X2∫
0

(X2 − s2)
α2−1b11(x1, s2)ds2

− β2a2(x)
(α2+β2)Γ(α1)

X1∫
0

(X1 − s1)
α1−1b11(s1, x2)ds1

− β1a3(x)
(α1+β1)Γ(α1)Γ(α2)

x1∫
0

X2∫
0

(x1 − s1)
α1−1(X2 − s2)

α2−1b11(s1, s2)ds1ds2

− β2a3(x)
(α2+β2)Γ(α1)Γ(α2)

x2∫
0

X1∫
0

(X1 − s1)
α1−1(x2 − s2)

α2−1b11(s1, s2)ds1ds2,

(13)

Φ(x) = φ11(x)− a1(x)
φ1(x1)

α1 + β1
− a2(x)

φ2(x2)

α2 + β2
− a3(x)

[
φ0 +

1

(α1 + β1)Γ(α1)

×
x1∫
0

(x1 − s1)
α1−1φ1(s1)ds1 +

1

(α2 + β2)Γ(α2)

x2∫
0

(x2 − s2)
α2−1φ2(s2)ds2

 . (14)

Thus, the following theorem is proved.

Theorem 2. Assume that αi + βi ̸= 0, i = 1, 2. Then in order that the operator l =
(l11, l1, l2, l0) of problem (1), (2) would be a homeomorphism between the spaces Cα(D) and
Hα,it is necessary and sufficient that integral equation (11) has unique solution b11(x) ∈ C(D)
for any Φ(x) ∈ C(D).

4 Existence and Uniqueness the Solutions of the
Problem (1), (2)

We see that, the problem of finding the solution u(x) ∈ Cα(D) of (1), (2) is equivalent to the
problem of finding the solution b11(x) ∈ C(D) of integral equation (11). The conditions imposed
on the coefficients indicate that the operator l11Q : C(D) → C(D) is bounded.

We rewrite integral equations (11) in the form

(I +A)b11 +Bb11 = Φ. (15)

Now we introduce the following operators

(A1b11)(x) =
a1(x)

Γ(α2)

x2∫
0

(x2 − s2)
α2−1b11(x1, s2)ds2,
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(A2b11)(x) =
a2(x)

Γ(α1)

x1∫
0

(x1 − s1)
α1−1b11(s1, x2)ds1,

(A3b11)(x) =
a3(x)

Γ(α1)Γ(α2)

x1∫
0

x2∫
0

(x1 − s1)
α1−1(x2 − s2)

α2−1b11(s1, s2)ds1ds2,

(Ã1b11)(x) =
∥a1∥C(D)

Γ(α2)

x2∫
0

(x2 − s2)
α2−1 |b11(x1, s2)| ds2,

(Ã2b11)(x) =
∥a2∥C(D)

Γ(α1)

x1∫
0

(x1 − s1)
α1−1 |b11(s1, x2)| ds1,

(Ã3b11)(x) =
∥a3∥C(D)

Γ(α1)Γ(α2)

x1∫
0

x2∫
0

(x1 − s1)
α1−1(x2 − s2)

α2−1 |b11(s1, s2)| ds1ds2.

It is obvious that for any n ∈ N the inequalities

|(An
1b11) (x)| ≤

(
Ãn

1b11

)
(x),

|(An
2b11) (x)| ≤

(
Ãn

2b11

)
(x),

|(An
3b11) (x)| ≤

(
Ãn

3b11

)
(x),

(16)

are fulfilled in the each point x ∈ D.

Lemma 3. For every natural number n ∈ N is valid

(Ãn
1b11)(x) =

(∥a1∥C(D))
n

Γ(nα2)

x2∫
0

(x2 − s2)
nα2−1 |b11(x1, s2)| ds2,

(Ãn
2b11)(x) =

(∥a2∥C(D))
n

Γ(nα1)

x1∫
0

(x1 − s1)
nα1−1 |b11(s1, x2)| ds1,

(17)

(Ãn
3b11)(x) =

(
∥a3∥C(D)

)n

Γ(nα1)Γ(nα2)

x1∫
0

x2∫
0

(x1 − s1)
nα1−1(x2 − s2)

nα2−1 |b11(s1, s2)| ds1ds2.

Proof. We prove the first statement of (17) by the induction method. First, for n = 1, we have:

(Ã1b11)(x) =
∥a1∥C(D)

Γ(α2)

x2∫
0

(x2 − s2)
α2−1 |b11(x1, s2)| ds2,

which is true.

Next, we assume that the formula is true for n = k:

(Ãk
1b11)(x) =

(
∥a1∥C(D)

)k

Γ(kα2)

x2∫
0

(x2 − s2)
kα2−1 |b11(x1, s2)| ds2.

Assuming this, we must prove that the formula is true for its successor, n = k + 1. That is,
we must show:
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(Ãk+1
1 b11)(x) =

(
Ã1(Ã

k
1b11)

)
(x) =

∥a1∥C(D)

Γ(α2)

x2∫
0

(x2 − s2)
α2−1

(
∥a1∥C(D)

)k

Γ(kα2)

×
s2∫
0

(s2 − τ2)
kα2−1 |b11(x1, τ2)| dτ2ds2 =

(
∥a1∥C(D)

)k+1

Γ(α2)Γ(kα2)

×
x2∫
0

|b11(x1, s2)|
x2∫

s2

(x2 − τ2)
α2−1(τ2 − s2)

kα2−1dτ2ds2

=

(
∥a1∥C(D)

)k+1

Γ(α2)Γ(kα2)

x2∫
0

|b11(x1, s2)| (x2 − s2)
(k+1)α2−1B(α2, kα2)ds2

=

(
∥a1∥C(D)

)k+1

Γ((k + 1)α2)

x2∫
0

(x2 − s2)
(k+1)α2−1 |b11(x1, s2)| ds2,

where

B(a, b) =

1∫
0

xa−1(1− x)b−1dx, a, b > 0.

Thus the first formula of (17) is therefore true for each natural number. By analogy, it can be
easily seen that second and third statements of (17) can be proved.

For the simplification of the notation let us consider the unit sphere

S =
{
b11 : ∥b11∥C(D) = 1

}
.

Using Lemma 3, with the help of the induction method the following lemma is proved.

Lemma 4. For every natural number n ∈ N and an arbitrary function b11(x) ∈ S the following
inequalities hold:

(Ãn
1b11)(x) ≤

(∥a1∥C(D)x
α2
2 )

n

Γ(nα2+1) , x ∈ D,

(Ãn
2b11)(x) ≤

(∥a2∥C(D)x
α1
1 )

n

Γ(nα1+1) , x ∈ D,

(Ãn
3b11)(x) ≤

(∥a3∥C(D)x
α1
1 x

α2
2 )

n

Γ(nα1+1)Γ(nα2+1) , x ∈ D.

(18)

Lemma 5. For the every operator A of the form (12) the following relation is valid

∞∑
n=0

∥An∥ < Eα(3δ) · Eα1(3δ) · Eα2(3δ), (19)

where ∥·∥ is a standard norm in the space of the linear operators, acting in the space C(D),

δ = max
(
∥a1∥C(D)X

α2
2 , ∥a2∥C(D)X

α1
1 , ∥a3∥C(D)X

α1
1 Xα2

2

)
, Eα(3δ) =

∞∑
k=0

(3δ)k

Γ(α1k+1)·Γ(α2k+1) and

Eαi(3δ) =
∞∑
k=0

(3δ)k

Γ(αik+1) , i = 1, 2 are Mittag-Leffler functions.
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Proof. Note, that the operators Ã1, Ã2 and Ã3 are in pairs commutative. Therefore with the
help of the induction method one can prove that the following inequality is correct for any
function b11(x) ∈ C(D):

|((A1 +A2 +A3)
nb11) (x)| ≤

(
(Ã1 + Ã2 + Ã3)

nb11

)
(x)

=




∑

0 ≤ i, j, k ≤ n
i+ j + k = n

n!

i! j! k!
Ãi

1Ã
j
2Ã

k
3

 b11

 (x).

Using estimates of Lemma 4 for all functions b11(x) ∈ S, we have:


∑

0 ≤ i, j, k ≤ n
i+ j + k = n

n!

i! j! k!
Ãi

1Ã
j
2Ã

k
3

 b11

 (x)

≤
∑

0 ≤ i, j, k ≤ n
i+ j + k = n

n!

i! j! k!

(
∥a3∥C(D)X

α1
1 Xα2

2

)k

Γ(kα1 + 1)Γ(kα2 + 1)

(
∥a2∥C(D)X

α1
1

)j

Γ(jα1 + 1)

(
∥a1∥C(D)X

α2
2

)i

Γ(iα2 + 1)
.

Therefore

|((A1 +A2 +A3)
nb11) (x)| ≤

∑
0 ≤ i, j, k ≤ n
i+ j + k = n

n!

i! j! k!

(
∥a3∥C(D)X

α1
1 Xα2

2

)k

Γ(kα1 + 1)Γ(kα2 + 1)

×

(
∥a2∥C(D)X

α1
1

)j

Γ(jα1 + 1)

(
∥a1∥C(D)X

α2
2

)i

Γ(iα2 + 1)
.

Then

∥(A1 +A2 +A3)
n∥C(D) = max

b11(x) ∈ S
x ∈ D

|(A1 +A2 +A3)
nb11| (x)

≤
∑

0 ≤ i, j, k ≤ n
i+ j + k = n

n!

i! j! k!

δk

Γ(kα1 + 1)Γ(kα2 + 1)

δj

Γ(jα1 + 1)

δi

Γ(iα2 + 1)
.

Hence it follows that the estimate

∞∑
n=0

∥An∥ ≤ Eα(3δ) · Eα1(3δ) · Eα2(3δ),

is true.
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Using inequality (19) we have

∥∥(I +A)−1
∥∥ ≤

∥∥∥∥∥
∞∑
n=0

An

∥∥∥∥∥ ≤
∞∑
n=0

∥An∥ ≤ Eα(3δ) · Eα1(3δ) · Eα2(3δ) .

Therefore the operator I +A is invertible in the space C(D). Then from (15) we have

b11 + (I +A)−1Bb11 = (I +A)−1Φ.

Now estimate the norm ∥B∥ of the operator B : C(D) → C(D). It is obvious, that

∥B∥ = max
b11 ∈ S
x ∈ D

∣∣∣∣∣− β1a1(x)
(α1+β1)Γ(α2)

X2∫
0

(X2 − s2)
α2−1b11(x1, s2)ds2

− β2a2(x)

(α2 + β2)Γ(α1)

X1∫
0

(X1 − s1)
α1−1b11(s1, x2)ds1

− β1a3(x)

(α1 + β1)Γ(α1)Γ(α2)

x1∫
0

X2∫
0

(x1 − s1)
α1−1(X2 − s2)

α2−1b11(s1, s2)ds1ds2

− β2a3(x)

(α2 + β2)Γ(α1)Γ(α2)

x2∫
0

X1∫
0

(X1 − s1)
α1−1(x2 − s2)

α2−1b11(s1, s2)ds1ds2

∣∣∣∣∣∣
≤

|β1| ∥a1∥C(D)

|α1 + β1|Γ(α2 + 1)
Xα2

2 +
|β2| ∥a2∥C(D)

|α2 + β2|Γ(α1 + 1)
Xα1

1

+
|β1| ∥a3∥C(D) x

α1
1

|α1 + β1|Γ(α1 + 1)Γ(α2 + 1)
Xα2

2 +
|β2| ∥a3∥C(D) x

α2
2

|α2 + β2|Γ(α1 + 1)Γ(α2 + 1)
Xα1

1

≤ k̄1 ∥a1∥C(D)X
α2
2 Γ(α1 + 1) + k̄2Γ(α2 + 1) ∥a2∥C(D)X

α1
1

+k̄1x
α1
1 Xα2

2 ∥a3∥C(D) + k̄2X
α1
1 xα2

2 ∥a3∥C(D) ≤ 4k̄δ,

where

k̄i =
βi

|αi + βi| Γ(αi + 1)Γ(αj + 1)
, i, j = 1, 2, i ̸= j,

k̄ = max(k̄1, k̄2).

Therefore, if

C =
∥∥(I +A)−1B

∥∥ ≤
∥∥(I +A)−1

∥∥ ∥B∥ ≤ 4k̄δ Eα(3δ) · Eα1(3δ) · Eα2(3δ) < 1,

then integral equation (15) has a unique solution b11(x) ∈ C(D) for any Φ(x) ∈ C(D).

It is obvious, that under the condition C < 1 the solution b11(x) ∈ C(D) of equation (15)
satisfied also the condition

∥b11∥C(D) ≤
1

1− C

∥∥(I +A)−1
∥∥ ∥Φ∥C(D) . (20)

Thus, the following theorem is valid.
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Theorem 3. If αi + βi ̸= 0, i = 1, 2 and C < 1, then equation (15) for any Φ(x) ∈ C(D) has
a unique solution b11(x) ∈ C(D) satisfying (20).

This theorem, states that equation (15) has a unique solution b11 = P−1y ∈ C(D) for
any y ∈ C(D), where P = I + (I + A)−1B and y = (I + A)−1Φ. By the use of this result,
it can be easily proved that problem (1), (2) has a unique solution u(x) ∈ Cα(D) for every
φ = (φ11(x), φ1(x1), φ2(x2), φ0) ∈ Hα. If y is defined as (I + A)−1Φ, and b11 = P−1y, then
function (9) becomes a unique solution to problem (1), (2) in Cα(D). The estimation

∥u∥Cα(D) ≤ K · ∥φ∥Hα , K = const > 0, (21)

is found from (9), (10) for the solution of (1), (2). Hence, the following theorem is proved:

Theorem 4. If αi + βi ̸= 0, i = 1, 2 and C < 1, then (1), (2) is a well-posed problem, i.e. for
each φ(x) ∈ Cα(D), there exists a unique solution u(x) ∈ Cα(D) that satisfies (21).

Remark 1. Note that for α1 ̸= 0, βi = 0, i = 1, 2 we have C = 0 < 1. Then by Theorem 4
(1), (2) is a well-posed problem.
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