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1 Introduction

The fractional calculus deals with extensions of derivatives and integrals to noninteger orders.
The field of fractional differential equations has been subjected to an intensive development
of the theory and applications in mathematical physics, finance, hydrology, biophysics, ther-
modynamics, control theory, statistical mechanics, astrophysics, cosmology and bioengineer-
ing (Baleanu et al., 2012; Hilfer, 2000; Mainardi, 2010; Miller & Ross, 1993; Nakhushev, 2000;
Oldham & Spanier, 1974; Samko et al., 1993; Tarasov, 2011; Vézquez et al., 2011). In recent
years, several qualitative results for ordinary and partial fractional differential equations have
been obtained (see (Agarwal et al., 2017; Dhiman et al., 2017; Diethelm, 2010; Gorenflo et al.,
2015; Kilbas & Marzan, 2004; Kilbas et al., 2006; Kochubei, 2013; Kubica& Ryszewska, 2018;
Liang et al., 2018; Podlubny, 1999; Zhou, 2014) and references therein).

In the simplest physical processes, there arise fractional derivatives with respect to two
independent variables— the coordinate and time. Therefore, the study of the boundary value
problems for the fractional partial differential equations is a topical field of fractional calculus.
The Darboux problem for fractional partial hyperbolic differential equations was studied in
(Abbas et al., 2012; Vityuk & Mykhailenko, 2008, 2011).

Nonlocal boundary value problems are usually called problems with given conditions that
connect the values of the desired solution and/or its derivatives either at different points of
the boundary or at boundary points and some interior points. Note that nonlocal problems
for hyperbolic differential equations and the corresponding optimal control problems are being
actively studied at present time (Byszewski, 1991; Yusubov, 2014, 2017). But, nonlocal problems
for the hyperbolic equations of fractional order are less investigated ( Abbas & Benchohra, 2009).

In this paper we investigate the existence and uniqueness of the solutions of the following
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fractional hyperbolic differential equations with boundary value conditions:

(l1u)(z) = DT D3?u+ a1 (x) DY u + az(x) D5u + as(@)u = ¢ (), (1)
reD= [O,Xl] X [O,XQ],

(hiw)(z1) = en DM u(z1, 0) + SrDY u(m, X2) = p1(z1),
T € Jg;l = [0, Xl],

(lgu)($2) = QQDSQU(O, .Tg) + BQD?QU(Xl,xz) = g02($2), (2)
X9 € JxQ = [0, XQ],

lou = u(0,0) = ¢,

where X1, Xy > 0, D{" D5? is the mixed Caputo fractional derivative of order o = (a1, a2) €
(0,1] x (0,1], D", i = 1, 2 are the partial o; -order Caputo derivatives.

It is further assumed that the functions a1 (), as(z), az(z) and ¢11(x) are continuous in D,
the functions ¢1(z1) and ¢a(xz2) continuous in J,, and J,,, respectively, «;, 3, ¢ = 1,2 are real
numbers.

The posed problem is reduced to the integral equation and the existence of its solution is
proved by the help of a priori estimates.

This paper is organized as follows. In Section 2, we recall briefly some basic definitions and
preliminary facts which will be used throughout the following section. The posed problem is
reduced to the integral equation in Section 3. The existence and uniqueness results for problem
(1), (2) are obtained in Section 4.

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are used through-
out this paper. By C(D) we denote the Banach space of all continuous functions from D into
R with the norm

lullepy = maxfu(@)] .

LY(D) is the space of Lebesgue —integrable functions u : D — R with the norm

X1 X2

Jull = / / (i, 22)| iy,
0

0

Definition 1. (Kilbas et al., 2006; Samko et al., 1993). Let oy € (0,00), and u € L'(D).
The partial Riemann-Liouville integral of order o of u(x) with respect to x1 is defined by the
exPTession

1

o) (r1 — sl)al_lu(sl,xg)dsl,

(I&lzlu) (x1,m2) = I

o — &

for almost all x1 € [0,X1] and almost all x2 € [0,X2], where I'(-) is the (Euler’s) Gamma
function defined as

L) = /tfletdt,f > 0.
0
Analogously, we define the integral
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2

(10;2 ) (#1,22) = oy /(gg2 — 59)2 u(ay, 52)dso,

0
for almost all x1 € [0, X1] and almost all x4 € [0, X2].

Definition 2. (Kilbas et al., 2006; Samko et al., 1993). Let ay € (0,1] and u € L*(D). The
Riemann-Liouville fractional derivative of order oy of u(x1,x2) with respect to xy is defined by
the expression

(Dggl ) (21, 22) = ail (I&;f”u) (z1,2),

for almost all x1 € [0, X1] and almost all x4 € [0, Xa].
Analogously, we define the derivative

a 9 l1—a
(DO?L'Q ) (551,562) = 871‘2 <I0’x22u) (1‘1,332),
for almost all x1 € [0, X1] and almost all x4 € [0, X3].

Definition 3. (Vityuk & Mykhailenko, 2011). Let aqn € (0,1] and w € C(D). The Caputo
fractional derivative (regularized derivative) of order ay of u(x1,x2) with respect to x1 is defined
by the expression

(D) (a1,2) = (ODg2, ) (1,02) = o (I (uls1,2) = u(0,22))) (21,22)

x1

1 0 o
- m@igjl /(xl - Sl) (u(slva) - U(O,xz))dsl.

0

Analogously, we define the derivative

(D§°0) (1,02) = (ODR3, ) (1s2) = 5 (12 (i, 52) = u(a1,0))) (1,02)

2

1 0 vy
T (1 a2) O / (22 = 52) 7 (w1, 52) — ul, 0))ds

Definition 4. (Kilbas et al., 2006; Samko et al., 1993). Let & = (a1, a2), o > 0, 1 =1, 2,
0 = (0,0) and uw € LY(D). The left-sided mived Riemann-Liouville integral of order o of
u(xy1, ) is defined by the expression

(Igjxu) () = F(al)lf(ozg)//(xl — 51)% Y@ — s9)%2 (s, 59)ds1dso.
0 0

In particular,

r1 T2

(Ig’xu) (:E) = u(x)’ (Iex /U 51,52 dS]_dSQ,
0

o\

for almost all x € D, where o = (1,1).
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For instance, I u exists for all a; > 0, i = 1, 2, when u € LY(D). Note also that when
u e C(D), then (Ig“xu) (x) € C(D), moreover

(15 u) (21,0) = (Igjgcu) (0,79) =0,2; € [0, X;],i =1, 2.

By 1—a we mean (1—aq, 1—ag) € (0,1] x (0,1]. We denote by D1 D5 := #Zm, the mized
second order partial derivative.

Definition 5. (Vityuk & Mykhailenko, 2011). Let o € (0,1] x (0,1] and u € C(D). The

mized fractional Riemann-Liouville derivative of order o of u(x) is defined by the expression
(D‘;‘xu) (x) = (Dnglggau) (x) and the mized Caputo fractional derivative (mized reqularized

derivative) of order o of a function u(z) is defined by the expression

(D) (z) = (D' DS2u) (21,32) = (“Dfyu) (21,22) = D1 Dax

X (I;,;a [u(s1, s2) —u(s1,0) — u(0, s2) + u(0, 0)]) (w1, 22) = I'(1— al)lr(l — az) .

T1 X2

82

X 021079 //(xl — 51)" M (zo — 52)” "% (u(s1, $2) — u(s1,0) — u(0, s2) + u(0,0))ds;dss.
0 0

3 Reduction of Problem (1), (2) to the Equivalent
Integral Equation

We define the functional spaces as follows

C*(D) = {u(z) € C(D)|D{"'u(xz) € C(D), D5*u(x) e C(D), D(x) € C(D)}.
Lemma 1. The space C“(D) endowed with the norm

lullga(py = llulloepy + 1PT ullopy + 1D5 ull o py + 1D ullop) (3)

1s @ Banach space.
We consider also the space

H* =C(D) x C(Jz,) X C(Jgy) X R
of elements b = (b1, b1, ba, by) with the norm
1bll e = lbrillepy + lbrllcr.,) + 102lle,,) + [bol 7,
where R is a space of real numbers.

The structural characteristic of the space C“(D) is given bellow.
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Theorem 1. The space C*(D) consists of those and only those functions u(z) € C(D) which
can be represented in the form

u(@) = (@) () = by + (Ig3,b1) (21) + (I62,02) (@2) + (I5,bn1) (@) (4)
where by1(z) € C(D), bi(z1) € C(Jy,), b2 € C(Js,), by € R,

Ty

o 1 o
<Io,;:1b1> (z1) = T /(951 — 51) by (s1)ds1,
0

x2
a 1 o
<IO,§32b2> (z2) = T /(952 — 52)°2 by (s9)ds2,
0

(I{ga’gcbll) (x) == 11(041)I,(062)//($1 - 81)a171($2 — 82)a271b11(81, Sg)dsldSQ.
0 0

It follows from (4) that

bii(z) = (D%) (x),b1(x1) = (D) (x1,0), ba(z2) = (D5%u) (0,2z2), by = u(0,0).
Lemma 2. The operator Q defined by (4) satisfies

Ci[bll e < 1Qbllga(p) < C2|[bllgra ;Y0 € HY,
where C; = const >0, 1 =1, 2.

The number by and the functions bj(x1), ba(x2), bi1(z) on the right-hand side of (4) are
independent elements of the function u(z) € C*(D). These assertions show that a linear home-
omorphism between C*(D) and H® exists. That is, the space C*(D) has the isomorphic de-
composition C*(D) = C(D) x C(Jy,) x C(Jz,) X R = H®. This important property of (4) can
be used for investigation of the initial boundary-value problems in C*(D).

We seek a solution of problem (1), (2) in the space C*(D) with dominating mixed Caputo
derivative D{*D5?u and with the norm (3). Problem (1), (2) is a linear nonhomogeneous
problem. We consider the problem as an operator equation

lu =, (5)

with linear operator | = (I11, l1, l2, lp) and ¢ = (¢11(x), p1(x1), w2(x2), o).

The existing conditions guarantee that operator [ is bounded from C“(D) into the Banach
space H. If, for the given ¢ € H®, problem (1), (2) has a unique solution v € C*(D) with
[ullca(py < K [[¢ll o, then (1), (2) is a well-posed problem, where k is an independent of ¢
constant. We observe that the considered problem is a well-posed one if and only if the operator
[ is a homeomorphism (linear) between C*(D) and H®.

Equation (5) can be reduced to the equivalent equation

Qb= (6)

with the unknown b = (by1(x), b1(z1), ba(z2), bo) € H* by the transformation u = Q b.
We choose the element

b= (bn(az), bl(.%'l), bg((L‘Q), bg) € H*
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such that the corresponding function u(x), defined by the representation (4) would satisfy the
conditions (2).
For this purpose substituting (4) into (2), we obtain

2

(LQb)(x1) = anbi(x1) + B1 | bi(x1) + p(}m (X2 — s2)*2 7111 (1, s2)ds2 | = @1(z1),

o%‘ﬁ O X

(lQQb)(CEQ) = 0421)2(1‘2) + ﬁg bQ(ZL‘Q) + F(il) (Xl — Sl)al_lbll(sl,xg)dsl = (,02(1‘2),

lo@Qb = by = 0. (7)

Let a; + B; # 0, ¢ = 1, 2, then from the first and second formulas of (7), correspondingly,
we have

2
1

bi(z1) = ﬁ p1(21) = mragy [ (X2 = s2)* b (1, s2)dsz |

o

1 2 (8)
b2(x2) = axtpB2 4’02('%2) T T(o)

@

(X1 — s1) by (81, 22)ds

oM o x

Substituting (8) and the third formula of (7) into (4), we obtain that the arbitrary function
u € C*(D) can be represented as

1
1
— - _ O51_1 d _ 2_ d
o) = ot o | () e s / m2 =) palsz)den
0 0
z1 Xo
ﬁl Cvl 1 X a2—1b dsid
" lar 1 BT (@) () (X2 — 52) 11(51, 82)ds1dsy
B T2 Xl
2 a;—1 op—1
- Xy — ! — 27 dsid
(ag + B2)T'(a1)I(a2) //( 1 st w2 = ) (51, 82)dsidss
0 0
1 1 T2
+F(a1)F(a2)//(xl — 51)0‘171(352 - 82)a271611(81,82)d51d82. (9)
0 0
Immediaty calculations give
Xo
Dy'u(z) = zi%f - (oc1+6611)1“(a2) J (X2 = 52)2 7 bri (21, 52)ds2
0
T2
gy J (22 = 52)%2 7 i (a1, s2)ds2,
0
(22) T
fel p2(T2 a1 —1
D 2 = —_ X _ 1 1
S2u(z) 02+ B (ot Ba)l(ar) /( 1 —51)* b1 (51, 29)dsy (10)
171
— 81 a1 1bn(81,1‘2)d81,
0

DalaQ’U,(J}) = b11( )
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Substituting (9) and (10) into (1), we obtain that equation (1) is equivalent to the integral
equation

((11Qb)(x) = bi1(x) + (Abur)(2) + (Bbu)(z) = @(2), (11)

where

(Abll E

1

az) f 2)* b1y (21, s2)ds2

(1‘1 — 51)0‘1_1b11(31,x2)d51 (12)

T1 To
f [ (z1 = s1) 7 (g — 52)*27 111 (51, 52)ds1ds2,

+
s
Q/\
>
’18 o8

al)

[e=]
o

X2
(Bb11)(x) = —7(%&1511)(?3@) J (X2 — 52)227 b1 (1, 52)dso
0

1

b
—% J (X1 = 51)*  bia(s1, w2)dsy
0

Bras@) PP (13)
~ @ B0 (o)) ({ Of(xl —51)"M 7 (X2 — 52)°2 7 b1 (s1, s2)ds1dse
xo X1
T T Of Of(Xl — 1) (w2 — 52)2 b1 (s1, s2)ds1dse,
1
(@) = pui(@) — ar(e) 2 () 220 oy gy L
a1+ B ag + o (aq + B1)T (1)
Tl
X /($1 —sl)al_lgol(sl)dsl 4+ — ( 2+,32 / T2 —82 ozl (82>d82 . (14)
0 0

Thus, the following theorem is proved.

Theorem 2. Assume that a; + 8; # 0, i = 1, 2. Then in order that the operator | =
(l11, U1, l2, lo) of problem (1), (2) would be a homeomorphism between the spaces C*(D) and
H® it is necessary and sufficient that integral equation (11) has unique solution b1y (z) € C(D)

for any ®(x) € C(D).

4 Existence and Uniqueness the Solutions of the
Problem (1), (2)

We see that, the problem of finding the solution u(x) € C%(D) of (1), (2) is equivalent to the
problem of finding the solution b11(z) € C(D) of integral equation (11). The conditions imposed
on the coefficients indicate that the operator [;;Q : C(D) — C(D) is bounded.

We rewrite integral equations (11) in the form

(I +A)b1y + Bbyp = @. (15)

Now we introduce the following operators

(A1b11)(z

/ 59)*2 by (1, 59)ds2,
0
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1

(Agbi1)(x) = ??Z)) /(561 — 51)* iy (51, 20)ds1,
0
@ [
(Agbn)(l‘) = F((jlg)g@//(:ﬂl — Sl)al_l(l‘g — 52)a2_1511(81,82)d$1d82,
0 0
Halll
(Arbin) (@) = — 2 / 2)*2 7" [br1 (w1, 52)| dsa,
0
. laz |l
(Agbi1)(x) = C/ x1 — 51)* by (51, 2)| dsq,
0
|a || T
~ 3
(Agbn)(x) C // a1 1 .732 — SQ)aQ*l |1)11(81, 82)| dsi1dss.

It is obvious that for any n € N the inequalities

(ATb11) (2)] < (ATbin) (2),
[(A5b11) ()] < (Abu1) (x), (16)
[(A5b11) (2)] < (A3bu) (2),

are fulfilled in the each point x € D.

Lemma 3. For every natural number n € N is valid

(Apbir)(o) = Ulem)” f 2o — 521921 by (01, 50)| dso,

n Hazl\cw) )" I Lol (7
(A3byy)(x) = Tlnar) f |b11(s1,22)| dsq,
An Ha3||c I nap—1 nag—1
(Agbu)($) 1‘1 — 81) L (332 — 82) 2 ‘bn(sl, 82)’ d81d82.
na1 nag

Proof. We prove the first statement of (17) by the induction method. First, for n = 1, we have:

2

(Aibyy)(z) = %/(@ — 52)°27 b1y (21, 52)| dsa,
0

which is true.
Next, we assume that the formula is true for n = k:

(S

(A]fbll)@:) = F(kag) /(1‘2 - 32)ka2_1 ’bll(l'l, 82)’ dSQ.
0

Assuming this, we must prove that the formula is true for its successor, n = k + 1. That is,
we must show:
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k
i o latllepy f - (||a1\|c<D>>
(Alf+1b11)(1') = (A1<A]fbn)> (1’) = F(0[2)0/@32 - 82) 1W

(larllogp) "

52
. kas—1 b drodso =
Xo/(’S? 72) (b1 (21, 72)| drads; I'(2)T (ko)

/|b11 T1,S2 |/ O¢2 1 7‘2 — Sz)kaz_ldngSQ

(chch(/:)))kJrl 7

== _ oo (kt1)az—1
T(ag)D (ko) 0/511(351,82)\ (z2 — s2) B(ag, kag)dse

(Ilach
= / YD1 1y (21, 59)| disy,
0

where

b 1dm a, b>0.

O\H
H

Thus the first formula of (17) is therefore true for each natural number. By analogy, it can be
easily seen that second and third statements of (17) can be proved. O

For the simplification of the notation let us consider the unit sphere
S = {611 : Hbﬂ”C(D) = 1} .
Using Lemma 3, with the help of the induction method the following lemma is proved.

Lemma 4. For every natural number n € N and an arbitrary function byi(x) € S the following
inequalities hold:

- a CEa2 n
(A?bll)(ﬂf) < (” 1HC(D) 2 ) , T € D,

I'(naz+1) N
(Aghu) () < Upeoni) e p, (18)
(Agbi1)(x)

IN

F'(nai+1)
(llasllo(pywy to52)"
T'(nai+1)I(naz+1) ? reD.

IN

Lemma 5. For the every operator A of the form (12) the following relation is valid

DA™ < Ea(38) - Ba, (36) - Eay(30), (19)
n=0
where ||-|| is a standard norm in the space of the linear operators, actmg in the space C(D),

o o o o 36
5= max(ualnc D) X582, llazllopy X laslleqpy X5 X5?), Fa(36) = z e ey and

E,;(30) = Z N a k+1)’ i =1, 2 are Mittag-Leffler functions.
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Proof. Note, that the operators Ay, Ay and Aj are in pairs commutative. Therefore with the
help of the induction method one can prove that the following inequality is correct for any
function by (x) € C(D):

(A1 + A5 + As)"biy) (@)] < (A + Ay + Ag)"bir) (@)

0<45,k<n
t+j+k=mn

Using estimates of Lemma 4 for all functions by1(z) € S, we have:

2 z’!j!k!AlA%Aéc bu| (@)
0<i,5,k<n
i+j+k=n

wt (laslowy X0%52) " (lazlogy X0) (larllego X52)

<
- Z il k! F(k:Oq + 1)F(l€0&2 + 1) F(jOél + 1) F(iag + 1)
0<4j,k<n
i+j+k=mn
Therefore

k
a - (lasllog) X7 X57)

Ay + As + A3)™b <
(A + A2 +43)%00) ()] < 2 ATk D(kay + 1) (kaz + 1)
0<ij,k<n
i+j+k=n
(Ha2||C(D)X11> (||a1”C'(D)X22>
F(qu + 1) F(iag + 1)
Then
(A1 + A2+ A3)"lcpy = = max |(A1 + A2 + A3)"bu ()
bn(x) es
xeD
| k i ()
S 5 L
R D(kay + D (kag + 1) T'(jog + 1) T(iae + 1)
0<i,j,k<n
i+5+k=n

Hence it follows that the estimate

i HAnH < Ea(35) ’ Ea1 (35) ’ Eaz (35)7

n=0

is true. O
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Using inequality (19) we have

>

n=0

< Z HAnH < Eoz(35) : Ea1 (35) ' Eoc2 (35) .
n=0

I+ 47 <

Therefore the operator I 4+ A is invertible in the space C'(D). Then from (15) we have

b+ (T +A)'Bbyy =T+ A)7!

Now estimate the norm HBH of the operator B : C(D) — C(D). It is obvious, that

||BH = max 7@ ’ilal a f X2 — 82) 1511($1,82)d$2
bii e S (a1+p1)T(az2)
11
zeD
X1

m%g)?mn /(Xl — 51)™ b (s1, 2)dsy

xr1 Xo

Qa,
( —1-511 " [(a2) // x1 — 1) (Xo — 82)*2 7 by (51, 82)ds1dse
B T2 Xl
a - —
(042+522 3 ['(a2) // (X1 = 1) 7 (s = 52)*bu(s1, 52)ds1 sy
Billlarllew) . q Bl lazllcpy o
(D) 2 )
"o+ AT (e +1)77 lag + B2| D(ag + 1)1
Bl lasllow) = o Bl laslleoy o587,
(D) ) 1

+ +
’Ckl + 51‘ F(Cvl + I)F(CEQ + 1) 2 ’CYQ + 52‘ F(al + 1)F(CE2 + 1) 1
< ki lla1llopy X52T (@1 + 1) + kol(az + 1) [laz]l ¢ py X1

TR X5 (as o) + 2 X252 s | oy < 4FS.

where

- Bi . o
k‘ = 727 - 17 27 7/ M
! |Ozi + ,31| P(Ozi + 1)F(aj + 1) J 7

k = max(ky, ko).
Therefore, if
C=|I+A)7'B| <|[T+A)7"Y| IB|| < 4kd Eq(36) - Eq,(36) - Ea,(35) < 1,

then integral equation (15) has a unique solution b11(z) € C(D) for any ®(x) € C(D).
It is obvious, that under the condition C' < 1 the solution by;(x) € C(D) of equation (15)
satisfied also the condition

1 _
Iorllep) < 7—F [T+ A7 1®llop - (20)
Thus, the following theorem is valid.
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Theorem 3. Ifa; +3; #0,i=1,2 and C < 1, then equation (15) for any ®(z) € C(D) has
a unique solution by1(x) € C(D) satisfying (20).

This theorem, states that equation (15) has a unique solution by; = P~ 'y € C(D) for
any y € C(D), where P = I + (I + A)"'B and y = (I + A)~'®. By the use of this result,
it can be easily proved that problem (1), (2) has a unique solution u(z) € C*(D) for every
0 = (p11(2), p1(21), Y2(x2), o) € H*. If y is defined as (I + A)~'®, and b;; = P~ 1y, then
function (9) becomes a unique solution to problem (1), (2) in C*(D). The estimation

[ellga(p) < K- ll¢llga, K = const >0, (21)

is found from (9), (10) for the solution of (1), (2). Hence, the following theorem is proved:

Theorem 4. If a; + ; #0,i=1,2 and C < 1, then (1), (2) is a well-posed problem, i.e. for
each p(x) € C*(D), there exists a unique solution u(x) € C*(D) that satisfies (21).

Remark 1. Note that for ag #0, 6; =0, i =1, 2 we have C = 0 < 1. Then by Theorem /
(1), (2) is a well-posed problem.
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